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The nucleation-based theory of polymer crystal growth has been extended to apply to the growth rate and 
morphology of polyethylene (PE) single crystals with curved edges. The treatment is employed to analyse 
in detail the data of Organ and Keller on PE crystals formed from n-hexadecane and n-tetradecanol, which 
possess both {1 1 0} and {2 0 0} sectors; the subordinate {2 0 0} sectors exhibit the curved edge. The 
theory (1) introduces the concept of lattice strain in the {2 0 0} sectors through a parameter o- S (which 
has an independent justification), (2) takes a {2 0 0} growth front to have the energetics associated with 
its being 'serrated' on a molecular level in addition to being strained, and (3) treats the dominant { 1 1 0} 
growth front in terms of the energetics of the customary Lauritzen Hoffman 'flat-surface' nucleation model. 
For the correct G, the theory accurately predicts the aspect ratio and curvature as a function of crystallization 
temperature for each solvent. The treatment provides insights relating to (1) the different melting points, 
fold surface energies, angles of tilt and fold surface regularities of the {1 1 0} and {2 0 0} sectors, (2) the 
prediction of an upper limit Tma x above which such crystals will not form, (3) the occurrence of a regime 
I ~ II transition on the {1 1 0} growth front and its absence on the {2 0 0} front, and (4) the reason that 
both melt- and solution-crystallized PE exhibit a preference for b axis growth. The proposed treatment 
removes an objection to nucleation theory and, with appropriate modifications, is potentially useful in 
treating morphological problems in other systems. 

(Keywords: polymer crystallization; nucleation theory; polyethylene; single crystal; dilute solution; curved edge; lattice 
strain; chain folding; serrated growth front; regime transition) 

I N T R O D U C T I O N  

Approximately 30 years ago, Lauritzen and Hoffman 
(LH) proposed a nucleation-based theory to account for 
the rate of growth of lamellar polymer crystals and for 
the variation in thickness of such crystals with under- 
cooling for both melts and solutions ~. Subsequent 
modifications and improvements to this general type of 
theory have been made, including the effect of fluctua- 
tions of the fold period 2'3, the effect of reptation 
on the growth rate 4'5, the melting behaviour 6, a pre- 
liminary approach to dealing with the 'quantized' fold 
periods exhibited by low-molecular-weight fractions 7 and 
the consideration 8 11 of different 'regimes' of crystalliza- 
tion. The LH approach, as extended and improved by 
its originators as well as others, has permitted one to 
understand and to interpret a variety of measurements 
related to isothermal crystallization in a broad range of 
polymers (see, for example, refs. 12 and 13 and the 
references cited above). To date, it would appear that no 
alternative approach has been proposed that has been 
able to deal with as many different aspects of the polymer 
crystallization problem. 

The original LH theory was developed solely for 
relatively high-molecular-weight polymers and for the 
fastest growing crystal front (the dominant growth face), 
which was assumed to be flat in the macroscopic sense, 
though some local roughness (on a molecular level) 
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resulting from random nucleation events was postulated. 
Occasionally, these limitations have been ignored and 
the basic LH theory applied to cases for which it was 
patently unsuited. As a consequence, the inconsistent 
and/or  misleading results obtained were sometimes 
considered to arise from an invalidity of the nucleation 
approach to polymer crystal growth with chain folding. 
One such example-- the existence of polyethylene (PE) 
single-crystal lamellae with curved edges--is the subject 
of this work. Our overall objective is to demonstrate how 
nucleation theory may be modified and extended to apply 
also to this particular behaviour. 

It has long been recognized that crystallization of PE 
from dilute xylene solution may give rise to 'truncated' 
single-crystal lamellae exhibiting both {1 10}  and 
{2 0 0} faces (and sectors), each sector exhibiting an 
essentially straight edge for aspect ratios less than about 
2. The classical LH theory 12 considers that a face, once 
nucleated, should fill out rapidly and completely. Hence, 
the LH treatment leads to the macroscopically straight 
edges commonly seen in such crystals. Aspect ratios 
of truncated lamellae were determined as a function 
of concentration and of crystallization temperature 
by Valenti and Pedemonte 14, and were analysed in 
terms of LH nucleation theory in the 'straight-edge' 
region by Passaglia and Khoury 15 and by Passaglia and 
DiM arzio 16. 

In addition, lamellae with decidedly curved edges were 
observed in dilute-solution-grown PE single crystals by 
Keith ~' and subsequently many others (see e.g. ref. 15 
for an extensive bibliography). Curved edges were also 
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observed in melt-crystallized PE preparations by LaBaig, 
Keith et al. and Bassett et  al. iv.  Toda 18'19 suggested that 
the solvent acting as an impurity interrupts substrate 
completion and causes the curvature effect, whereas 
Sadler 2° proposed a 'roughening' mechanism. In any 
case, we shall shortly describe a nucleation-based 
treatment that is designed to be applicable to chain-folded 
PE crystals formed in both the melt and dilute solution 
and which (when tested for the case of solution-grown 
crystals of PE) leads to a quantitative understanding of 
the curvature effect and to insights into a number of 
related phenomena as well. 

It had been suggested that the existence of lamellar 
crystals with curved edges indicated a fundamental flaw 
in nucleation theory, including specifically the LH 
treatment (Sadler 2° and references cited therein). Sadler 
clearly posed a valid question when he cited the apparent 
incompatibility of a curved-edge crystal and the original 
LH nucleation theory, which features a macroscopically 
flat surface. Note that the faces in PE single-crystal 
lamellae exhibiting curvature are the slower growing 
subordinate {2 0 0}, and not the faster growing domi- 
nant {1 1 0}, types. Application of the 'classical' LH 
theory to a macroscopically curved facet, as well as any 
conclusions drawn therefrom, is clearly invalid. Since 
nucleation theory leads to satisfactory results when 
applied to the dominant 'straight-edged' growth faces, 
we deemed it likely that a variant of this type of theory, 
which took account of the different characteristics of the 
subordinate growth faces, would provide the most 
acceptable solution to the puzzle. One must expect major 
differences in the surface energetics of the two types of 
growth front. We shall represent subordinate {2 0 0} 
growth faces in PE crystals as 'serrated' on a molecular 
level to bring out the feature that little or no lateral 
surface free energy a is involved in the work required to 
add a 'first' stem to such a face. At the same time we 
retain the conventional 'flat-surface' model as a descrip- 
tion of the dominant {1 1 0} growth front to highlight 
the concept that a relatively large 'a' term is then involved 
in putting down a 'first' stem. The occurrence of polymer 
crystals with curved edges is not restricted to PE. There 
are a number of polymers whose lamellar crystals 
apparently exhibit such curvature: for example, poly- 
acrylonitrile 21, t r a n s - l , 4 - p o l y i s o p r e n e  2z and (possibly) 
extended-chain crystallization of poly(ethylene oxide) 
fractions 23. 

Only recently have data adequate for an understanding 
of the curved-edge behaviour become available. Organ 
and Keller 24'2s, from a comprehensive study of the 
growth of PE single-crystal lamellae from dilute solution 
in n-hexadecane and n-tetradecanol, have provided the 
basis on which to test a model to explain this pheno- 
menon, which is discussed below. Their study, at fixed 
concentration, is thus far unique in that a regime I ~ II 
transition 8-~°'12'26 was detected in the growth kinetics 
of the dominant {1 1 0} faces for crystals grown from a 
solvent. 

Additional input to the formulation of the model came 
from the crystallography of PE preparations. Bassett 27 
determined for an isolated lamella that the diagonals of 
the PE unit cell were unequal (dll o :~ d lio) and that the 
asymmetry alternated from one sector to another. Davis 
et al. 28 established that the PE unit-cell dimensions were 
a function of the lamellar thickness. Such observations 
clearly indicated the presence of strain within the crystals, 

quite probably resulting from the repulsion of chain folds. 
We shall account for the presence of strain in the crystal 
proper by introduction of a quantity denoted as. 
Marand z9 has summarized arguments indicating that the 
lattice expansion occurs mainly between {2 0 0} planes, 
which are nominally parallel to the growth face in those 
sectors which exhibit the curved edges. He also deter- 
mined on the basis of molecular energy calculations that 
¢r s was of the order of 1 ergcm -2 (1 mJm-2) .  In view 
of the above, we deemed it appropriate to modify 
nucleation theory to include lattice strain as a part of 
the explanation of the curved-edge phenomenon. Thus, 
in treating the subordinate {2 0 0} sector with its curved 
edge, we shall take into account the presence of lattice 
strain as well as the fact that the growing edge may be 
represented in energetic terms as 'serrated' on a molecular 
level. It will emerge that a determination of the behaviour 
of the substrate completion rate for a {2 0 0} sector, 
9200, is critical to an understanding of the phenomenon of 
lamellae with curved edges. Another point is the 
suggestion on the basis of the 'decoration' technique that 
the 'fold' surfaces of the {2 0 0} sectors are more 
disordered than those of the {1 1 0} sectors 3°. 

Our understanding of the existence of lamellae with 
curved edges within the confines of nucleation theory 
benefited from the cooperative efforts of others. Mans- 
field 31"32 provided a set of phenomenological relations 
connecting the geometry of a curved-edge PE crystal and 
the various growth and substrate completion rates critical 
to its formation, and, as noted earlier, Marand estab- 
lished the approximate magnitude of the lattice strain 
parameter as. We earlier 33 developed a model based on 
nucleation theory for a serrated growth face where the 
underlying crystal (represented for simplicity as having 
a square lattice) possessed lattice strain, and we presented 
preliminary results for PE crystallized from n-hexa- 
decane. Here, we describe in detail the application of the 
model to the results of Organ and Keller for crystalliza- 
tion of PE from both n-hexadecane and n-tetradecanol. 
It will emerge that the value of as derived from the 
curvature data is quite similar to that predicted on the 
basis of molecular energy calculations. 

The treatment extends beyond that of simply fitting 
the curvature data. It yields supportable values of the 
lattice strain energy and of the fold surface free energy 
in the sectors with curved edges, and accurately repro- 
duces shapes and axial ratios of the crystals as a function 
of crystallization temperature. It predicts, and prelimin- 
ary evidence supports, the existence of an upper tempera- 
ture limit above which crystals of the type considered 
here cannot form. The theory indicates that, partly or 
largely because of the lattice strain, the {2 0 0} sectors 
may melt at a measurably lower temperature than will 
the { 1 1 0} sectors. The treatment is also consistent with 
the angle of tilt of the chains being larger in the body of 
the {2 0 0} sectors than in the {1 1 0} and with the 
'fold' surface regularity being better in the { 1 1 0} sectors 
than the {2 0 0}. Finallyl we note for these curved-edge 
crystals that a regime I ~ II transition appears on a 
{1 1 0} face whereas application of the Lauritzen 'Z e' 
test 9 to growth on the corresponding curved {2 0 0} face 
reveals it to be consistent with regime II behaviour in 
the entire range of measurement. Thus, we suggest that a 
crystal of this type can exhibit different regime behaviour 
on crystallographically dissimilar faces at the same 
growth temperature. 
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ANALYSIS OF LAMELLAR SHAPES: G R O W T H  
AND SUBSTRATE C O M P L E T I O N  RATES 

We indicate here the method of analysis employed to 
extract the substrate completion rate for the {2 0 0} 
sectors, g2oo, from observed growth rate and shape data 
of PE single crystals as a function of growth temperature. 
The behaviour of g2oo relative to the rate of advance of 
a {2 0 0} face, G2o o, is key to the selection of the relevant 
nucleation model, which is described in the next section. 

We begin with an analysis of shape data based upon 
the somewhat idealized PE single-crystal lamella shown 
in Figure I. Such a crystal contains six sectors four 
{1 1 0 } a n d t w o { 2  0 0} and its shape may be defined 
in terms of its aspect ratio (A,) and the curvature (C) of 
the edges of the {2 0 0} sectors. The aspect ratio is 
defined as the ratio of the length and the width or as the 
ratio of the growth rate at the tip and the growth rate 
of the curved face 15'16. That is: 

A r =- G l l o ( t i p l / G 2 o  0 = G 1 l o / ( G 2 o 0  c o s  A) (1) 

where A is the angle between the normal to a {1 1 0} 
growth plane and the horizontal direction and is fixed 
by the crystallography of the unit cell (A = tan-l(lb]/lal), 
where a and b are the unit-cell vectors). (Previously is, 
this angle was denoted by the symbol 0.) Note that 
A r l m i n ) = l b [ / l a ]  describes the conventional diamond- 
shaped lozenge as commonly obtained from crystalliza- 
tion of PE from a dilute xylene solution. The curvature 
may be defined as the ratio of the 'bulge' of a {2 0 0} 
face and the length of the base of that face. In terms of 
Figure 1 : 

C =- K2/2ht  (2) 

where h is the rate of advance (in a horizontal direction) 
of the intersection between adjacent {2 0 0} and {1 1 0} 
faces and t is the elapsed time. In Figure 1, the angle 0 
characterizes the shape of the growing sector and is a 
measure of the increase in length of each (2 0 0) layer 
over the previous one. 

In a crystal that might be represented by Figure 1, 
growth of the dominant {1 1 0} growth faces is normal, 
i.e. governed by the 'classical' LH flat-surface theory ~2. 
A subordinate 'curved' {2 0 0} growth face has edgewise 
advance rate h, forward advance rate G20 o, and substrate 
completion rate 9200. Growth of each {2 0 0} sector, 
therefore, occurs under conditions wherein its boundaries 
are moving. From classical (flat-surface) nucleation 
theory ~2, one expects the condition 92oo>>h to hold, 
which would lead to a flat growth profile. 

T G2°° g2oo 

200 SECTOR-I [~ ~ = = 

ht K 3 

Figure 1 Polyethylene single crystal with curved (2 0 0)-type edge 
(schematic). Broken lines symbolize fold planes. (From Hoffman and 
Miller 33 after Mansfieldal.) See text for detailed description 

To understand the situation depicted in Figure 1 in 
terms of nucleation theory, one must be able to relate 
the geometry (shape) observed to the pertinent growth 
rates. Mansfield 31 obtained phenomenological equations 
for this problem by solving the differential equations for 
nucleation and growth given by Frank 1 o for the case with 
moving boundaries. For purposes here, his results are 
summarized briefly. First, Mansfield defined a dummy 
variable 0 by: 

COS ~ --= h / g 2 o  o (3) 

which is valid for h~<g2o o. Then he obtained as 
steady-state solutions 31'32 the following relations be- 
tween parameters characteristic of the ideal crystal 
illustrated in Figure 1 and the relevant rates of growth: 

tan 0 = h/(G2o o sin q~) (4) 

h = G1 l o / c O s  A - G2o 0 tan A sin ¢ (5) 

C = (G2oo/2h)(1 - sin ¢) (6) 

and 

A r = (h/G2oo)(l + tan A/tan 0) (7) 

Combination and rearrangement of the above yields: 

tan 0 = (tan A Ar)/(2CA r-- 1) (8) 

and 

C tan 0 = (1 - sin ~)/(2 sin ~b) (9) 

Equations (3)-(9) were derived on the basis that multiple 
nucleation occurred on the curved {2 0 0} edge so that 
growth conformed to regime II, the actual substrate 
length L being 2ht. No restrictions forbidding a regime 
I --* II transition on the { 1 1 0} front were introduced. 

From known A and measurements of A r, C and G 110(tip) 
as a function of temperature, one may determine the 
behaviour of Gtl o, G2o o, g2oo, h and 0 for the system 
being studied. Clearly, when g2oo >>h in the above, 
sin ¢ --* 1 and C --, 0, which is the expectation of classical 
LH theory 12 for a flat growth profile. On the other hand, 
given A, GlOO, G2o o and g2oo for a lamellar crystal 
exhibiting curvature, one must solve a parametric 
expression (such as equation (5)) for h, since 4) depends 
on h, following which the geometrical parameters 
pertinent to Figure 1 may be calculated. 

Organ and Keller 25 studied the growth (at various 
isothermal temperatures) of single-crystal lamellae from 
dilute (0.05% weight/volume) solutions of PE in n- 
hexadecane and in n-tetradecanol. Their results are 
reproduced in Figures 2 (growth rates) and 3 (C and A~). 
Figure 2 also includes earlier work on the growth of 
single crystals from xylene. In these figures, T x and AT x 
are, respectively, the isothermal crystallization tempera- 
ture and the corresponding degree of undercooling 
(AT x = T d - Tx, where T d is the dissolution temperature 
of PE in the particular solvent). Below we shall show 
that the analysis of these data in terms of our model with 
the serrated edge and lattice strain quantitatively repro- 
duces their experiments and allows predictions in 
agreement with other observations. 

In Figure 2 it can be seen that the { 1 1 0} faces exhibit 
a regime I ~ II transition in two of the solvent systems. 
(The regime I ~ II transition relates only to these faces 
see later.) The solvent commonly used to study the 
growth of PE single crystals--xylene--does not display 
a regime transition in the temperature range investigated 
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to date, nor do the crystals exhibit curved edges in the 
temperature range depicted in Figure 2. Because of the 
latter, the data for this solvent cannot be analysed to 
obtain gzoo(T). 
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Figure 2 Growth rate G 110(tip) of polyethylene single-crystal lamellae 
as a function of 1/TxATx (after Organ and Keller25): (A) 0.1% in 
xylene; (O) 0.05% in n-hexadecane; (IS]) 0.05% in n-tetradecanol 

The analysis proceeded in the following manner. The 
growth rate of the dominant {1 1 0} sectors was 
obtained from the data in Figure 2 and from Gllo = 
G1 lO(t ip)cos A,  where A = 32.9 ° based upon the unit-cell 
dimensions listed in Table 1. The growth rate G2oo of the 
subordinate {2 0 0} sectors was obtained from Gllo and 
Ar by means of equation (1). The Organ and Keller data 
of Figure 3 could then be analysed readily by means of 
the Mansfield relations. Equation (8) gave values of tan 0 
which, with equation (9), yielded values of ~b (hence, 
h/gzoo), leading to values of h/G2o o (hence, h) by way of 
equation (4). Finally, equation (3) was used to obtain 
92oo. Thus, the phenomenological parameters important 
for the formation of curved edges (h, 0 and, most 
importantly, g200) were deduced directly from the 
experimental observations. 

The results of our analysis of the data in Figures 2 and 
3 for the two solvents are shown in Figures 4 and 5. The 
upper part of each figure displays the growth rate of the 
dominant { 1 1 0} sectors and exhibits the regime I --* II 
transition shown in Figure 2. The lower part of each 
figure displays the growth rate G2o o and substrate 
completion rate 92oo for the subordinate {2 0 0} sectors. 
No regime transition is apparent in the G2oo(T ) curves 
or in the appropriate plots of In G2o o involving l / T A T  s 
to be discussed subsequently. Thus, we take it to be 
possible for different faces of a growing crystalline lamella 
to correspond to different regimes, an inference that will 
in due course be supported by application of the 
Lauritzen 'Z L' test 9, which shows that Gzoo(T) is 
consistent with regime II. Values of 0 for each tempera- 
ture and solvent obtained as part of this analysis are in 
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F i g u r e  3 Aspect ratio A r and curvature C of polyethylene lamellae a s  a function of crystallization temperature T x and of undercooling AT~ (after 
Organ and Keller2S): symbols as in Fioure 2. (a) Ar versus Tx; (b) C versus Tx; (c) Ar versus ATx; (d) C versus A T  x 
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Note the regime I --, II transition associated with these faces. (b) Growth 
rate G2o o and substrate completion rate g2oo of the 'curved' {2 0 0} 
faces 

curvature will vanish. This conclusion is emphasized in 
Figure 6 in which the variation of sin 4) with h/g2o o is 
shown. Clearly curvature will be detectable only for a 
restricted range of h/92oo, say, 0.3<~h/92oo<~ 1.0. 
Through equation (5), the main contribution to the value 
of h is Gllo (which is independent of the nature of the 
growth process in the {2 0 0} sectors). Accordingly, if 
curvature is to be exhibited, we require that g20o be 
reduced markedly from what on a flat unstrained surface 
would be a high value. One way to accomplish this is to 
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20 

excellent agreement with those which can be measured 
from the figures presented by Organ and Keller 25. 

From Figures 4 and 5 it can be seen that the 
phenomenological analysis for crystals with curved edges 
leads to essentially parallel behaviour of G2oo and 92oo 
(even through the temperature of the regime 1--* I I  
transition for the dominant face). This will prove to be 
decisive in the selection of the correct nucleation model 
for the {2 0 0} sectors. 

Any model of the mechanism of growth of {2 0 0} 
sectors with curved edges must meet three criteria 
indicated by the above: (a) predict the curved edges; (b) 
predict the nearly parallel growth and substrate comple- 
tion rates for the sectors with curved edges; and (c) 
correspond to regime II  behaviour for growth of the 
{2 0 0} sectors over the experimental temperature range. 
The origin and consequences of these constraints are 
discussed briefly below. 

Curvature of a growing face is described by equation 
(6) in which the primary variable is the quantity 
(1 - sin q~). By inference, then, for the {2 0 0} faces to 
exhibit curvature, the substrate completion rate g2oo 
must be just slightly faster than is the edge advance rate 
h: otherwise, ( 1 - s i n  4)) will be small and detectable 
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Figure 6 The critical curvature parameter, 1 - sin q5 (cf. equation (6)), 
as a function of h/gzo o. Note that detectable curvature will be evident 
only for the limited range for h/,q2oo of approximately 0.3 ~< h/g2oo <~ 1.0 

POLYMER, 1991, Volume 32, Number 6 967 



Nucleation theory and curved edges." R. L. Miller and J. D. Hoffman 

reduce the effective melting point of the {2 0 0} sectors. 
Such a reduction is herein taken to be a consequence 
within the sectors of lattice strain whose presence was 
discussed above 28. Dav6 and Farmer 34, from semi- 
empirical molecular energy calculations, concluded that 
{2 0 0} folds would be difficult to pack. Hence, the origin 
of the strain in the crystal interior may be presumed to 
be repulsive interaction between the {2 0 0} folds. 

Parallelism of g2oo and G2oo for the curved edges 
requires complete or nearly complete elimination of the 
normal term involving the lateral surface free energy a 
from the surface nucleation rate i, irrespective of any 
consideration about lattice strain. In other terms, an 
appropriate model must not  permit the creation of a 
significant amount  of exposed lateral surface in the 
nucleation step as is characteristic of the flat-surface 
model. 

Criterion (c) above is imposed by the derivation of the 
Mansfield relations (equations (3)-(9)). Curved edges are 
not predicted if a substrate length L of the usual 
magnitude (say, , - - 5 0 n m  26) is introduced into the 
moving boundary problem. This implies that the partic- 
ular type of 'defect' that might otherwise define the 
'domain size' L on the {2 0 0} face is ineffective in 
terminating substrate completion on the {2 0 0} face, 
causing the operative substrate length to be 2ht .  A 

substrate length L of the usual magnitude is clearly 
operative on the { 1 1 0} face causing the regime I --* II 
transition to appear. 

N U C L E A T I O N  M O D E L  FOR CURVED EDGES 

An appropriate model involving lattice strain to suppress 
9 and a means to eliminate the cr term is one with a 
serrated edge, such as is shown in F i g u r e  7. (Note, in the 
present context, that the serration is on a m o l e c u l a r  level . )  

This figure depicts the projection of a PE crystal onto 
the ab plane. The broken rectangles represent individual 
unit cells, the heavy full lines represent growth faces, and 
the lighter full lines form a grid of lozenges that represent 
the cross-sectional areas of previously added stems. 'Flat 
surfaces' corresponding to growth of the dominant 
{1 1 0} growth faces are shown at the right of the figure. 
At the top is the 'serrated surface' for a (2 0 0) face. 
Stems indicated by broken lozenges represent nucleation 
acts on each of the growth faces illustrated. Clearly, the 
flat-surface model includes a lateral surface energy (a) 
term in the nucleation process whereas the ideal serrated 
surface does not. (Surfaces exposed to the surroundings, 
of course, are characterized by the lateral surface free 
energy a. Of relevance here is that addition of a stem on 
the serrated face involves no net increase in a surface 
whereas nucleation on the flat surface does.*) 

Each stem (represented by a diamond-shaped lozenge) 
added to a growing surface interacts with the surface 
(and with adjacent stems) along a contact length s which 
is indicated for the (2 0 0) face by the lines of short 

* The authors naturally realize that no surface is either absolutely flat 
or ideally serrated. We follow here the normal convention of nucleation 
theory in proposing a surface geometry that pictorializes a situation 
consistent with the underlying crystal structure such that one can 
reasonably describe the corresponding surface energetics. The {2 0 0} 
faces may be considered to be serrated to the same approximation that 
one may consider the {1 1 0} faces to be flat in the event, the major 
source of the important energetic differences between the two faces can 
thus be perceived in geometrical terms 

---,b ^ 
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X X X \ 
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Figure 7 Lattice model (to scale) for nucleation and substrate 
completion in polyethylene for both the 'flat' and the 'serrated' surface 
cases, projected onto (0 0 1) (schematic). Note that the serration is 
on a molecular level, a, b are unit-cell axes; ahkO, bhko are stem thickness 
(bhko = dhk0) and stem width (ahko) values relevant to growth on the 
(hkO) crystal plane. ( \ , / )  traces of the planar zig-zag chain backbone; 
( - - - )  unit-cell edges; ( ) positions of previously added stems (the 
heavy lines denote the current growth surfaces); (---) surface patch 
denoting a nucleation act; ( . . . . .  ) locus of the lattice strain 
(characterized by surface free energy as) encountered upon addition of 
a stem to the serrated (2 0 0) face along a total contact length (per 
added stem) s with contact area sl (1 is the lamellar thickness). Surfaces 
exposed to the surroundings are characterized (as usual) by a lateral 
surface free energy, a 

dashes. If I is the thickness of the lamella (or, more 
precisely, the stem length if the chains are tilted with 
respect to the plane of the chain folds), the contact area 
between the substrate and the added stem is sl. (By 
adding subscripts to s to distinguish between nucleation 
and substrate completion processes, the model becomes 
quite general and one may treat both the serrated and 
the flat surfaces35.) Molecular dimensions of adding 
stems are identified in the figure for each surface and are 
listed in T a b l e  1. In our previous preliminary treatment 3s 
of the PE crystals formed in n-hexadecane, we employed 
a simplified 'square' lattice. The treatment to be given 
here is similar, but is more exact for the PE case and is 
general for the orthorhombic crystal system. 

Interaction on the {2 0 0} faces leading to internal 
lattice strain is introduced by means of an interfacial 
surface free energy as acting over the area of contact. We 
anticipate that as < a. Implicit in F i g u r e  7 is that growth 
of a flat {1 1 0} surface is treated in the conventional LH 
manner,  i.e. without lattice strain effects. 

One may treat the serrated-edge model depicted in 
F i g u r e  7 in a manner completely analogous to the 
'.standard flux equation formulation of nucleation and 
.growth on a flat surface 33. The free energy of adding v 
..stems to the (2 0 0) face at the temperature T = T x may 
be written: 

, A ~  = vs la  S + 2(v - 1)a0boa e - v a o b o l A G  (10a) 

shTs 
= s la  s - -  a o b o l A G  - (v - 1)aobo l A G  - 2a  e - a o b o )  

(10b) 
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in which a o (the stem width), b o (the stem thick- 
ness) and a~ (the fold surface excess free energy) refer to 
the parameter values appropriate for the specified 
growing surface and AG is the free energy of fusion, 
AG = AhfAT/Tm, in the normal fashion with Ahf the heat 
of fusion and T m the strain-free thermodynamic melting 
point of the crystallizing system (AT=  T m -  T). As 
required for clarity, we shall distinguish values of the 
parameters for different faces. 

One may construct the general rate constants for 
nucleation and growth that are consistent with A~b~ in 
the standard manner 33. For  simplicity here, we choose 
the situation in which the backward reaction is sup- 
pressed (e = 0) and set the energy apportionment factor 
(~,) equal to zero. Whether the backward reaction is 
included or not has little effect on the resultant mathe- 
matics. The principal difference in the ' e=  1' (full 
backward reaction) and the 'e = 0' (suppressed backward 
reaction) treatments of the serrated model is in the value 
of 6200 in equation (11) below: the value of ~200 for the 
'e = 1' case is twice that given in equation (11) 33. Other 
differences occur in the pre-exponential factor, but these 
affect our analysis in only a trivial way. The meaning of 

was discussed in our earlier paper a3, where it was noted 
that the mathematical approximation ~b = 0  led to 
sufficiently realistic expressions for stem lengths and 
the growth and substrate completion rates at low-to- 
moderate undercoolings. (Low values of 0 imply that the 
activated state in nucleation and substrate completion 
has a 'partial stem' character33.) Thus, applying the flux 
concepts and definitions of classical LH theory 12 to the 
molecularly serrated model, one obtains 33 for the 
growing {2 0 0} sector at the crystallization temperature 
T, the initial lamellar thickness: 

1" = 2a~lzool/AG ~ + 6200 with 620 o -  kT/sa~ (11) 

the substrate completion rate: 

g2oo = go~2oolAT~ exp( - q2oo/kT) 

× e x p ( - Q * / n T )  e x p ( - K J T A T ~ )  (12a) 

the surface nucleation rate: 

i2oo = io~2oo)AT~ e x p ( - - Q ~ / R T )  e x p ( -  KJTAT~)  (12b) 

and hence the growth rate: 

G2o o = Go(2oo)ATs e x p [ -  (q2oo/2kT)(j - 1)] 

x e x p ( - - Q * / R T ) e x p ( - K J T A T ~ )  (13) 

where j = 1 for regimes I and III and j = 2 for regime 
II. (In the present case the correct choice is j = 2.) The 
nucleation constant: 

K~ = 2Sasae~Zoo)Tm/kAh f (14) 

is the same for all three regimes. (The 'front factor' Got2oo) 
is, of course, different for the different regimes.) Also, one 
has the usual result for the work of chain folding: 

q200 = 2aoboae(2oo) (15) 

where aob o is the cross-sectional area of the chain. We 
define a quantity W2o0 as the total work of chain folding 
in a {2 0 0} sector. It includes q2oo and the lattice strain 
incurred by the folding process: 

W2oo = q2oo nt- sl*a, (16) 

In the above, k is the Boltzmann constant and R the gas 
constant. 

The presence of lattice strain lowers the melting point 
of a {2 0 0} sector below that resulting from lamellar 
thickness alone: 

Tm(2o0) = Tm(1 - 2aeiZOol/Ahfl2oo - sa~/Ahfaobo) (17) 

From this expression, the melting point of a large, thick 
crystal where l ~ ~ (and with strain appropriate to some 
finite thickness such as l*) may be written as: 

Z~ = Tin(1 - sa~/Ahfaobo) (18) 

and the degree of undercooling relative to the melting 
point of a strained sector becomes: 

AT, = T~-  T (19) 

The free energy of fusion in the presence of strain, then, 
may be expressed as AG~=AhfAT~. Finally, for the 
orthorhombic lattice of PE: 

s = 2[b2o0 + (a2oo,,"2)2] 1':" (20) 

which, for the stem dimensions listed in 1"able I, becomes 
s = 0.91 nm. These expressions for a {2 0 0} sector are 
generalizations of those presented earlier 33 for a square 
lattice ( a2o  o = 2 6 2 0 o )  for which s = 2 ( 2 ) 1 / 2 6 2 0 0  = 0.87 nm. 

Note in equation (17) the term sajAhfaob o, which leads 
to an additional depression of the melting point caused 
by the presence of strain. The effect of this term is to 
reduce g2oo- Of course, another factor involving a, that 
reduces 02oo is that of Ks in equation (12a). 

For future reference, analogous expressions for the 
strain-free {1 1 0} sectors may be written s according to 
the classical 'flat-surface' model: 

/g*(110) ~-- 2aelt lO)/AG + 6110 with t~110 ~- kT./2bl 1o a 
(21) 

Tmlllo) = Tin(! - - 2 a e ( l l o j A h f l l l O )  (22) 

G1 lo = Ci A T  e x p [ -  (ql lo/2kT)(J - 1 )] 

x e x p ( - Q * / R T ) e x p ( - K g / T A T )  (23) 

in which A T =  T m -  T, Ci_=C,11o/ is tile 'front factor' 
for the ith regime, and: 

Kg(i) = 4b 1 lO0"O'e(1 lolTm/jkAhf (24) 

is the nucleation constant for the ith regime with j = 1 
in regimes I and III and j = 2 in regime 1I as before. The 
substrate completion rate for the I1 l 0} sectors is: 

g i l a = g o ,  lie) A T e x p ( - q l l o / k T )  e x p ( - Q * / R T )  (25a) 

and the corresponding surface nucleation rate is: 

i~x o = ioll~olAT e x p ( - Q * / R T )  e x p ( - K g / T A T )  (25b) 

The work of chain folding, q~ lO, is given by: 

q l  1 0  = 2aoboa~l 1 el (26) 

As mentioned, we have used the e, = 0 case (suppressed 
backward reaction) for simplicity. The mathematical 
relations are little affected and expressions appropriate 
to the inclusion of the backward reaction may readily be 
obtained beginning with equation (10) and/or  from the 
tables previously presented 33. For  crystallization from 
dilute solution one replaces T m by T d as appropriate in 
all of the above expressions. 

Equations (12)-(19), with j = 2 ,  satisfy the three 
requirements noted earlier. For  finite a,, the melting point 
is reduced and g2oo is slowed through the factor 
e x p ( - - K j T A T , ) .  From equations (12a)and (13), g2oo 
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and G2oo are seen to be essentially parallel, differing only 
in the minor factor exp ( -q zoo /2kT )  for j = 2 .  In 
anticipation of results to be discussed shortly, we have 
accepted the concept of different values of a¢ in dif- 
ferent sectors. Alfonso et al. 36 suggested that fold sur- 
face free energies might be different in different fold 
sectors, Passaglia and Khoury ~5 explicitly so stated, and 
Toda 37 interpreted growth rates of PE in n-octane 
solution in terms of the flat-surface model in which 
aae(200)  > aae(110)" 

For the PE lamellae with curved edges from two 
different solvents, one obtains the phenomenological 
behaviour for the {2 0 0} sectors shown in Figures 4 and 
5, which we shall interpret with the mathematical 
expressions based on the strained, serrated-edge model 
of Figure 7. The corresponding data for the dominant 
'flat-surface' growth {1 1 0} faces shown in the same 
figures are treated in the customary way with equations 
(23) and (24). From a visual comparison of the G~lo and 
G2oo curves in Figures 4 and 5, one can surmise at the 
outset that the effective undercooling scale for G2o 0 is 
different from that of G~lo, with the downturn of G2oo 
being caused by a lower effective melting point. This is 
embodied in the theory by the use of T s -  T for G2o o 
and T d - T for G~ lO, this difference being justified by the 
strain known to be present in the {2 0 0} sectors and 
by the ensuing ability to predict curvature. 

Definitions and acceptable values of various input 
parameters for PE are collected in Table 1. It should be 
noted that Organ and Keller 24 (from analyses based on 
equations (21) and (22)) concluded that a~(11o) should be 
significantly higher for n-hexadecane than for n-tetra- 
decanol, a suggestion also indicated by the different 
slopes of the lines in Figure 2. However, Huseby and 
Bair's results for the solvent n-octadecane 38 and Naka- 
jima's values for a variety of solvents including n- 
hexadecane 39, all obtained from T m versus 1/l plots, 

Table 1 Inpu t  data  for polyethylene a 

Unit-cell dimensions b, a 
b 

Area per chain, a . b / 2  = aob o 

Heat of fusion b, Ah r 

Activation barrier  b, Q* 

Fold surface free energy b, rye( a ~o~ 

Dissolut ion temperature ,  T d 
n-tetradecanol c 
n-hexadecane c 
xylene d 

Regime transi t ion temperature ,  TI~II 
n-tetradecanol e 
n-hexadecane e 

Work  of chain folding b, qa ~0 

Serrated surface contact  length, s 

Stem widths,  a ~ o  
a2oo (= b) 

Stem thicknesses, b~o (= dlxo) 
b2oo (= a/2) 

0.7640 n m  
0.4943 nm 

0.1888 nm 2 

2.8 x 1 0  9 erg c m -  3 

2000 cal m o l -  1 

90 erg c m -  2 
4890 cal m o l -  1 

133.5°C 
124.5°C 
110.5°C 

113.7°C, ATI~ u = 19.8°C 
102.1°C, ATI~ u = 22.4°C 

4900 cal mol - 1 

0.9101 n m  

0.4550 nm 
0.4943 n m  

0.4150 nm 
0.3820 n m  

"1 e r g c m - 3  = 0 . 1 J m  3; 1 e r g c m  - 2 =  1 mJ m - 2 ;  1 ca1=4.184 J 
bCommonly  accepted values 12'33 
CFrom T m versus  1/1 plots 25 
dFrom T'm versus  1/ l  plot 24 
eFrom ref. 25 

are more in agreement with the 'universal' value of 
90 erg cm-2 that we have adopted here*. For compar- 
ison, we exhibit the behaviour with xylene as the solvent 
(Figure 2), where data are to be treated as a regime I 
'flat-surface' case without significant lattice strain. 

Analysis of the { 1 1 0} growth rate data of Figures 4a 
and 5a follows a traditional path: a plot of In Gllo + 
Q * / R T - l n  AT versus l / T A T  according to equation 
(23) yields a straight line for each regime whose slope is 
the appropriate Kg(i ) of equation (24) and whose intercept 
yields a value for the pre-exponential C i of equation (23). 
The results of this analysis of the {1 1 0} growth rate 
data are listed in Table 2: only the values of Kg(~) for 
regime I are included since the value of Kg(.i is just 
one-half of Kg(l), within 10%. 

Analysis of the {2 0 0} data of Figures 4b and 5b is 
slightly more complicated. From equation (12a), a plot 
of In g2oo + q2oo/kT + Q * / R T -  In ATs) versus l / T A T  s 
should yield a straight line with slope K s. Such a plot, 
however, requires values of ae(2oo), through equation (15), 
and of T s, neither of which is available a priori. 
Accordingly, we proceeded in an iterative manner. To fit 
one of the curves for g2oo, for example, we assumed a 
value of ae(2oo) (hence, of q2oo) and determined that value 
of as (hence, Ts) that gave the 'best' linear least-squares 
fit of the data in the l / T A T  s plot based upon equation 
(12a). The slope of that line yielded a value for the 
nucleation constant which we label Ks(expt ). This process 
was repeated for other choices of ae(2OO), each such choice 
yielding a separate value of Ks(expt ) for the appropriate 
value of as. Values of Ks(expt ) thus obtained are plotted 
as a function of ae(2oo) in Figure 8 (lines denoted '1'). It 
can be seen that the value of Ks(expt ) is relatively insensitive 
to the choice of ae(2oo) and is, therefore, reasonably 
accurately estabished by this means alone. For each 
ae(2oo), a s pair, equation (14) was used to determine also 
a calculated value of the nucleation constant, Ks(c,~c ), 
which was found to vary almost linearly with choice of 
a~(2oo) (Figure 8, lines denoted '2'). The final stage of the 
analysis, then, s e t  Ks(expt ) = Ks(c,~c ) which thereby gave 
the appropriate values of K s (in this case, Ks(o) ) and of 
ae(2oo) and led directly to an appropriate value for as 
based on the deduced value of Ks(o). This process clearly 
established the intersection of the two lines in each part 
of Figure 8 as the relevant solution. With values of ae(2OO) 

and as thus determined, the g2oo and G2o o data sets were 
analysed according to equations (12a) and (13), respec- 
tively, to yield the values of the parameters listed in the 
columns labelled 'from g(T)' in Table 2. 

An analogous procedure was followed for the G2o o 

data based on equation (13), regime II (j = 2), in accord 
with criterion (c) above. This analysis yielded the values 
listed in the columns labelled 'from G(T)'. 

Table 2 thus lists the results of our analysis of the 
growth rate data shown in Figures 4 and 5 in terms of 
parameters appearing in equations (12)-(26). The upper 
portion of the table contains the results of a conventional 
flat-surface analysis of the growth of the dominant 
{1 1 0} sectors; the lower portion contains the results 
according to the expanded nucleation model involving 
lattice strain. Note that the values for Ks(o) and Ks(G) are 
in good agreement for a specified solvent and type of 
analysis and are not greatly different for the two solvents. 
Included in this table, insofar as was possible, is an 

* 1 e r g c m - 2  = 1 mJ m - 2  
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Table 2 Results of 'strained crystal' analysis 

(a) [1 1 0} sectors 

Parameter 

Nucleation theory and curved edges. R. L. Miller and J. D. Hoffman 

n-Tetradecanol n-Hexadecane 

Kgll I (K 2) 0.9197 x 105 

C l ( c m s  1 K  ~) 0.296 

C n ( c m s  - I K  11 0.01725 

trtr~ (erg 2 cm 4) 526.69 

a (erg c m - 2 )  5.85 
(based on % = 90) 

a~ll lol {erg cm -21,, 78.0 

cr (erg cm -2) 6.75 
(based on ael 1 lol in row above) 

q l l o ( c a l m o l  1) 4250 

(b) 12 0 0] sectors 

1.129 x 105 

0.450 

0.01447 

661.34 

7.35 

98.5 

6.71 

5360 

Xylcne 

0.8848 × 10 5 

0.00488 

521.0l 

5.79 

89.7 

5.81 

4880 

Xylene 

6 2  118 b 

0.9 1.3 a 

>1 i 

n-Tetradecanol n-Hexadecane 

F r o m  g(T), F r o m  G(T), F r o m  g(T), F r o m  G(r/), 
Parameter eq. (12a) eq. (13), j = 2 eq. (12a) eq. (13), j 2 

a~12o0) (erg c m -  2) 81.9 75.6 (52.5) 65.8 

tT~ (erg cm - 2) 1.24 ~ 1.28 1.74 ~ 1.66 

o-~o~12ool (erg 2 cm 4) 101 96.5 (91.1) 108 

T~ (°C) 124.8 124.6 112.6 113.2 

K~tg~ (K 2) 1.94 x 104 1.80 x 104~ 1.71 x 10 '~ 1.96 x 104" 

9ol2ool (cm s -  l K -  11 0.101 0.0549 ~ 0.00787 0.0292" 

K~c~ (K 2) 1.98 × l 0 4 f  1.85 × 104 1.78 x 10 'w 2.04 x 104 

Go~2ool (cm s -  ~ K ~) 0.00249 s 0.00169 0.000493 f 0.00113 

q2oo (cal mol  ~) 4450 4110 (2850) 3570 

W2o o (cal mol  - 1 ), 7440 7200 7050 7580 

Wzoo/ql ioh 1.52 1.47 1.44 1.55 

"Values from ref. 24 (corrected) 
bRange of values suggested in ref. 15 
~For the 'square' lattice model  33 a,  is 1.82 and  1.29 erg cm 2 for n-hexadecane and n-tetradecanol, respectively 
aBased on molecular energy calculations 29 for representative core stem lengths of 10 15 nm 
qnferred from the fit of the .q2o0 data to equation (12a) with values of ae~2oo~ and a~ from analysis of the G2oo data 
rlnferred from the fit of the G2o0 data to equation (13) for j = 2 with values of 0-e4200) and or, from analysis of the .q2oo data 
"Calculated for a representative stem length of 18.5 nm 
hWith q t l o = 4900 cal mol  ~ corresponding to a~lllOl = 90 erg cm 2 
~Estimate based on the observation that sector curvature in crystals grown from xylene is detected only at relatively low undercoolings ~5 

analysis of data relevant to the crystallization of PE from 
dilute xylene solution (the data in Figure 2, primarily). 
Values of K~ and cr cannot be obtained at this juncture 
for crystals formed in xylene since no curvature could be 
detected within the temperature range where the growth 
rates are known. It may be possible in the future to obtain 
K S and a s for the xylene case since it is known that curved 
edges do appear in crystals with high aspect ratios grown 
from this solvent at high growth temperatures / 5. 

For the { 1 1 0} sectors, comparison of the values listed 
in the table with those accepted for the melt is in order. 
The value of the product acr e in solution is approximately 
one-half that found for the melt 12. If the 'universal' value 
aetl lo~ = 90 erg cm-  2 is adopted, ~ values deduced for all 
three solvents (row 5) are smaller than the value 
a-~ 11.8ergcm -2 appropriate for the melt 5 and the 
variation in the value of ~ between the solvents is fairly 
marked, especially for n-hexadecane. For values of ael~ l o) 
appropriate to the Organ Keller analysis 2'~ (row 6), the 
variation of a with solvent persists but is less marked 
(row 7). Either way, the evidence is clear that a in dilute 
solution is lower than it is in the melt. It would be of 
interest to have a detailed theoretical explanation of why 

a is lower in the presence of solvent. Of importance here 
is that our analysis in terms of lattice strain and its 
significance is not affected by the existence of the low 
values of a in the case of crystallization from dilute 
solution. While there is some uncertainty about the 
absolute value of 6 appropriate to each solvent, the 
growth of the {! I 0} sectors in solution appears to be 
well represented by the conventional LH approach, 
including the fact that Kg(l ) ~ - - -  2Kglm as required by regime 
theory. 

It is instructive to note the similarities in the behaviour 
of solution-grown crystals of PE and melt-crystallized 
fractions. In the latter 5'12, a dominant l l l O} growth 
front controls the kinetics of growth of the spherulites 
and axialities and a regime I ~ II transition is clearly 
present: the front is of the 'flat-surface' type with no 
significant lattice strain effects. The behaviour of G1 loltip) 
in a solution-grown crystal is analogous to this with 
respect both to the presence of the I-~ II transition* 

* The undercooling at the I ~ II  regime transition A 7]_n is 16.5 + (1.5 K 
for the melt 5 and is only slightly larger in the presence of solvent see 
Table I 
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Figure 8 Lattice strain nucleation constant K s as a function of choice 
of ae(2oor 1, K s as evaluated from g2oo (equation (12)) by 
least-squares fit; 2, K~ as calculated from K s from equation (14). The 
intersection of the two lines establishes the 'best' value of ae(2oo) and 
of a~. Upper part (H), n-hexadecane; lower part (T), n-tetradecanol. 
(The corresponding plot for n-hexadecane based on G2o o gives an 
intersection at a~(2o0~ = 65.8 erg cm -2) 

(Figure 2) and to the applicability of the 'flat-surface' 
model. With the { 1 1 0} growth faces being dominant, 
the direction of maximum growth rate is naturally 
collinear with the b direction of the unit cell in each case. 
Further, there is evidence of lattice strain in the {2 0 0} 
regions of both melt- and solution-grown crystals. In 
melt-crystallized PE, the lattice expansion is mainly along 
the a direction of the unit cell 2s. This is reasonably 
attributed to repulsion of the {2 0 0} folds. In the present 
treatment of solution-grown crystals in terms of the 
'serrated-surface' model for a {2 0 0} sector, the presence 
of lattice strain effects resulting from repulsions in the 
{2 0 0} fold array is clearly evident. 

We now show that growth of the {2 0 0} sectors is 
consistent with regime II. This is readily demonstrated 

using the familiar Lauritzen 'Z L' test 9, where ZL is a 
number defined as: 

Z L = iL2/4g (27a) 

in which i is the nucleation rate, g the substrate 
completion rate and L the substrate length. If ZL ~< 0.1, 
the system is in regime I and if Z L ~> 1, the system is in 
regime II; the regime I ~ II transition occurs at ZL "~ 1/2. 

Consider the {2 0 0} serrated face with lattice strain 
as exemplified by the behaviour of Gzoo(T). Suppose that 
regime II is appropriate, as assumed in the Mansfield 
relations. The general regime II definition is Gn= 
bo(2i9) 1/2. With g2oo and i2oo given by equations (12) 
and G2oo of equation (13) taken to be in regime II (j = 2), 
it is found that the ZL test is to be made with: 

L2(io(2oo,~ fq2oo'~ 
ZL(200, = ~ \ ~ / e x p ~  kT- ~ 

= 2 k2bo/ \go,zoo# exp~ kT ) (27b) 

(regime II assumed) 

where Go(2oo) is understood to be the pre-exponential 
factor for regime II (i.e. j = 2), as listed in Table 2. Except 
for L, the second equality in equation (27b) involves 
directly observed quantities. Relevant values of 9o(2oo) 
derived from experiment are listed in Table 2. It is readily 
shown with the effective value of L being 2ht that 
ZL(200) >> 1, which is consistent with regime II behaviour. 
The result ZL(200~ > 1 holds even for a crystal where 2ht 
is as small as 10 nm. Accordingly, the assignment of 
growth on the {2 0 0} face as regime II is self-consistent 
with respect to the derivation of the Mansfield relations 
via criterion (c) above, the Lauritzen 'ZL' test and the 
kinetics based on the 'serrated' model with lattice strain. 
This holds irrespective of the regime active on the {1 1 0} 
face. Furthermore,  when properly plotted with AT~ as 
the undercooling scale in 1~TATs, the experimental 
In G2o 0 data, which do not depend on the Mansfield 
relations, show no evidence of a normal I --* II regime 
transition with the correct slope ratio for any reasonable 
value ofa~. The assumption a n -~ 0, giving AT s ~ AT, does 
lead to an 'apparent '  I ~ I I  transition, but this 
assumption cannot be justified because of the undeniable 
presence of significant lattice strain in the {2 0 0} sectors. 
In summary, the behaviour of growth on the {2 0 0} 
face is consistent with its being regime II over the entire 
experimental range. With a definite regime I ~ I I  
transition being known to occur on the { 1 1 0} front, it 
follows that a regime transition can appear on one face 
of a growing crystal of this type and not on the other. 
Regime II persists on the {2 0 0} faces largely because 
the effective substrate length is much larger and the 
substrate completion rate much smaller for the 'serrated' 
model with lattice strain as compared with these same 
quantities for the conventional flat-surface model (cf. 
equation (27a)).* 

* The extremely slow substrate completion rate on the {2 0 0} face 
evidently allows time for stem addition to bypass the defects that would 
otherwise define an effective L on a shorter timescale, thereby leading 
to multiple nucleation and regime II behaviour on that face (criterion 
(c)). A parallel argument has been employed to explain examples of 
the re-emergence of regime II at growth temperatures above regime I 
(ref. 26 and references therein) 
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DISCUSSION 
Mansfield 31'32 provided the means whereby the charac- 
teristics of lamellae with curved edges could be analysed 
in terms of the rates of substrate completion and of crystal 
growth. The lattice strain model described above permits 
expressions for these same rates to be understood in detail 
with a straightforward extension of nucleation theory. In 
addition, the lattice strain model with a serrated growth 
face unexpectedly predicted the existence of a maximum 
temperature in each solvent at which curved-edge crystals 
could be grown--see later. It is significant that the 
introduction of only one additional parameter, a s, 
essentially uniquely determined, permitted the Organ 
Keller data on solution-grown single crystals of PE to 
be analysed in detail. Values of the lattice strain 
parameter a~ deduced and listed in Table 2 are in 
reasonable agreement with the value estimated from 
molecular energy calculations by Marand 29 (see Table 
2). Recall that there is direct and independent evidence 
of strain in the {2 0 0} sectors 2s. The {2 0 0} sector 
clearly is different from the {1 1 0} in that it possesses 
significant lattice strain, requiring that a s (and 
consequently 7",,) be introduced into the theory, and it 
has the energetic characteristics of a serrated rather than 
a flat growth front, such that virtually no additional 
a-type surface is involved in the nucleation act. 

There are additional criteria that must be met in these 
crystals. One of these is the match of stem lengths at the 
sector boundaries. Wittmann and Lotz 3° and Khoury 4° 
have indicated that no discontinuity in lamellar thickness 
exists at sector boundaries, but this does not necessarily 
require that lamellar thicknesses be exactly the same in 
the body of the {1 1 0} and {2 0 0} sectors. Since the 
expressions for the stem lengths in the two sectors, 
equations (11) and (21), while of the same general form, 
have different functionalities, it follows that the degree 
of tilt in the body of adjoining sectors will be different 
unless the lamellar thicknesses are quite different in the 
two types of sector. Following an analysis scheme 
adopted earlier 41 for lamellar thickness data, we show 
in Figure 9 illustrative calculations of the stem lengths 
for the two sectors. (The larger 620 o as compared with 
611o contributes significantly t o  lg(2OO) being larger than 
lg~ol.) The calculated curves agree reasonably well at 
the lower crystallization temperatures. Higher tempera- 
tures require progressively increasing angles of tilt in the 
{2 0 0) sectors (relative to that in the {1 1 0} sectors), 
which are not excessive for PE. The exact details of the 
calculation of the stem lengths depends strongly on the 
value ofaell ~ o) chosen, and our results should be regarded 
as being illustrative rather than strictly quantitative. For 
Figure 9, we have used the value 90 erg cm-  2 and other 
relevant parameters from Table 1. Observe that l* is 
correctly to be identified with the stem length in this 
situation and not with the lamellar thickness. In support 
of the calculations shown in Figure 9, Runt et alff 2, from 
longitudinal acoustic mode (LAM) studies of PE single 
crystals, established that the stem lengths were greater 
in the {2 0 0} than in the {1 1 0} sectors. This result is 
consistent with the theoretical prediction of the present 
model. 

Rough estimates of the angle of tilt in the {2 0 0} 
sectors can be given based upon the results in Figure 9. 
For simplicity, we take the stems in the {1 1 0} sectors 
to be normal to the fold planes. For  n-hexadecane (upper 
figure) the tilt angle in the {2 0 0} sectors would vary 
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Figure 9 Calculated 1" curves for {1 I 0} and {2 0 0} sectors. Upper 
part (H), 0.05% in n-hexadecane; lower part (T), 0.05% in 
n-tetradecanol. These results apply to the body (and growth front) of 
the designated sector 

from 14.4 to 32.5 ° for the temperature range shown (with 
an angle of 49.2 ° at the highest reported crystallization 
temperature). For n-tetradecanol (lower figure) the 
corresponding range of tilt angles would be 39.1 to 49.0 ° 
for the range depicted (60.2 ° at the maximum 
crystallization temperature). Except possibly for n- 
tetradecanol at the highest growth temperature reported, 
tilt angles with these values are within an acceptable 
range and are not in disagreement with the angles 
deduced by Bassett and Hodges 43 in lamellae extracted 
from melt-crystallized PE (mean tilt angles of 30 and 40 ° 
with a variation around each mean of _+ 15°). Also, 
LaBaig 1~ found a tilt angle of - 4 5  ° in melt-crystallized 
specimens. The foregoing suggests that lamellar thick- 
nesses in the body of the two types of sectors are rather 
similar so that the different stem lengths in these sectors 
do in fact cause different angles of tilt rather than 
considerably different lamellar thicknesses. There must 
be notable changes of tilt in the immediate vicinity of the 
sector boundaries since the lamellar thicknesses are 
essentially the same there, but with the stem lengths 
wishing to be different. This is probably connected with 
the fact that varying angles of tilt are seen presumably 
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within a given sector 4°'44. Our approximate estimates of 
tilt refer to the body of the {2 0 0} sector (including the 
growth front) and do not attempt to explain precise 
details of what occurs exactly at and very near sector 
boundaries. 

From the results listed in Table 2 it is seen that the 
work to form an isolated {2 0 0} chain fold, q2oo, can 
be significantly less than that of forming a {1 1 0} fold. 
This agrees with the semiempirical molecular energy 
calculations by Dav6 and Farmer 34 and by others cited 
therein. However, the total work of forming the chain 
fold and placing it, with its stem, on the lamellar surface, 
W2oo in equation (16), is greater than that for the { 1 1 0} 
fold because it includes the term, sWs, arising from the 
lattice expansion caused by chain fold repulsions--the 
lattice strain free energy. As a consequence, it requires 
approximately one and a half times as much work to 
form a unit of area (say, that corresponding to one stem) 
for the folded {2 0 0} sectors as for the {1 1 0} ones. 
The increased work is sufficient to make the {2 0 0} 
sectors subordinate to the {1 1 0} sectors in terms of 
growth rate but not so large as to make growth of the 
{2 0 0} sectors impossible nor to cause the elimination 
of the {2 0 0} sectors in the crystals. Even though the 
values deduced for ao~2oo) and as in the two solvents are 
rather different, their combination in the total work of 
chain folding, W2oo, compensates to yield a reasonably 
constant value for the {2 0 0} sectors (Table 2). It is safe 
to conclude that the overall work of forming a 
{2 0 0}-type surface involving both stems and chain 
folds and including lattice strain effects induced by fold 
repulsions is ,-~ 7400 _+ 350 cal mol-  1 as compared with 
~4900 cal mo1-1 (based on O'e(ll0) = 90 erg cm -2) for 
the corresponding process for a {1 1 0}-type surface. 

An adjunct of the analysis with the lattice strain model 
is the prediction that a strained {2 0 0} sector should 
melt at a lower temperature than will an adjacent { 1 1 0} 
sector. From equations (22) and (17), the exact formula 
for the temperature difference with solution present is: 

Td(110) - -  T~i(aoo) 

-- ( SGs ae(200) ae(110) + (28) 
2TaAhf -l~ooo 1110 2aobo/ 

where one may set l=12oo~-lllo for obtaining rough 
estimates. 

With l assumed to be 18.5 nm and ae(11 o) = 90 erg cm - 2 
(and values of the other parameters from the tables), 
estimates of the temperature differences using equation 
(28) are in the vicinity of 6.1 and 7.4°C for n-hexadecane 
and n-tetradecanol, respectively. These estimates assume 
that no annealing (thickening or other process that might 
relieve strain) takes place during the crystallization 
process or during the melting run, this being a 
particularly hazardous assumption in view of the rather 
high temperatures involved. Thus, the ¢r S effect at the 
growth front that controls the kinetics, and which in turn 
leads to highly accurate predictions of the shape as a 
function of growth temperature (see later), may in some 
cases be partially erased in the main body of the crystal 
by annealing processes. Accordingly, the temperature 
differences cited above should be taken as upper bounds 
of an illustrative character. We also note that, in the 
general case, as may decrease with increasing stem 
length 29'33 with the end result that T't110) - -  Tm(2oo) may 
be expected to decrease somewhat with increasing 

crystallization temperature and axial ratio if a sufficient 
temperature range is involved. That there can be different 
melting points in different sectors is supported by 
observations on the truncated, non-curved-edge PE 
crystals grown from dilute xylene solution by Bassett et 
al. 45'46, by Harrison 47'.8 and by Alfonso et al. 36. Also, 
Organ and Keller 49 detected a clear melting-point 
difference of the predicted type in PE crystals with a low 
axial ratio that were dispersed in silicone oil. This 
difference did not appear in crystals with higher axial 
ratios that were formed at higher temperatures, perhaps 
because of annealing effects, which were known to be 
present. One may conclude from the cited references, 
taken in sum, that when there is a melting-point 
difference, the {2 0 0} sectors generally melt out first, in 
qualitative agreement with our predictions. 

As mentioned previously, if one has values of Gl10, 
G2oo and g2oo one may solve the parametric equation 
(5) to obtain a value of h and, hence, A r and C. Since 
Table 2 contains values of the constants in the growth 
rate equations (12a), (13) with j = 2 ,  and (18) for a 
{2 0 0} curved edge and (23) with j = 1 and 2 for a 
{1 1 0} face for the two solvents, we were able to 
calculate the shape of the PE crystals expected as a 
function of crystallization temperature. Representative 
examples are shown in Figures 10 and 11 for the limits 
of the experimental temperature range reported by Organ 
and Keller 25 for each solvent and, in Figure 10, for the 

Tx : 99"2°C 

( ) 
T~ : 102.1°C 

T× = 106.4°C 

Figure 10 The shape of polyethylene single crystals grown in 
n-hexadecane at various crystallization temperatures calculated 
according to the lattice strain model with serrated surface using values 
of the parameters from Table 2. The extremes shown represent the 
limits of the experimental data of Organ  and Keller 25 
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T× = i 07 .4 °C  

T× = 1 1 8 . 7 ° C  

Figure 11 As in Figure 10 but for n-tetradecanol 

regime I--, I1 transition temperature in n-hexadecane. 
Note that the calculated shapes are based on the results 
of a nucleation theory analysis! It is clear that these agree 
well with the Organ and Keller shape data (Figure 3) 
throughout the entire experimental range for both 
solvents. The curved edge is predicted to be a section of 
an ellipse 3~ and this accords well with electron 
micrographs in the literature.* 

The growth rate equations evaluated here may be used 
together with the Mansfield phenomenological relations 
to extrapolate shape behaviour to temperatures outside 
of the experimental temperature range. From the 
behaviour of the data shown in Figure 2, one might well 
expect PE lamellae with curved edges to grow readily (if 
slowly) at temperatures well above those reported. 
However, extrapolation of our calculations to tempera- 
tures closely proximate to or only slightly higher than 
those reported by Organ and Keller was impossible: the 
critical parameter h/g2oo exceeded unity essentially at the 
highest growth temperature experimentally reported for 
each solvent and the solution of the shape equations 
became imaginary. Thus, we postulate that the highest 
temperature reported may well be close to the highest 
temperature of growth possible for the type of crystal in 
Figure 1 for each system, that is, that Tmax(expt ~ ----- Tmax(calc ). 
For n-hexadecane, the experimental and calculated 
values are 106.4 versus 106.75°C; and for n-tetradecanol, 
the values are 118.8 versus 118.73°C, respectively. 

Recent unpublished experiments carried out at the 
University of Bristol 5° indicate that an upper tempera- 
ture limit for growth of the type of crystal depicted in 
Figure I may well exist. The same whole polymer PE 
and solvents discussed here were employed (because of 

* With only a small change in the input data, lenticular crystals 
representing the extreme form of that depicted in Figure II for the 
higher temperature, i.e. crystals that have only very small {1 1 0} faces 
and long elliptical [2 0 0] edges, can be accounted for. While such do 
not appear in the Organ Keller studies, objects apparently of this type 
have been extracted by Keith et al. and Bassett et al. ~7 from 
melt-crystallized PE grown at high temperatures in regime I. At the 
opposite extreme, Professor M. L. Mansfield of MMI has pointed out 
to the authors that nearly circular crystals can arise under the condition 
G2oo ~-- g2oo for a 'square lattice' model. See Note added in proof 

the polydispersity of the sample, fractionation effects 
occurred). It was estimated that formation of this type 
of crystal would cease ~2°C above Tmaxlcalc~ for each 
solvent. We interpret these observations to mean that a 
Tmax effect was present. Provided this interpretation is 
correct, it would lend strong support to both the model 
and the analysis given here. From a theoretical viewpoint, 
the cessation of growth of this type of crystal near 
Tmax(calc ~ c a n  be traced back to the repulsion of 12 0 0} 
chain folds. This repulsion induces significant lattice 
strain as embodied in a s which, in turn, simply stops 
nucleation and substrate completion in the [2 0 0} sector 
at Tmax- This cut-off effect at a specific high growth 
temperature also correlates with the increasing difference 
in stem lengths (hence, tilt) in the two sectors with 
increasing growth temperature. The difference in tilt 
angle also can be traced through ~r s back to the repulsion 
of chain folds in the {2 0 0} sectors, this effect being 
absent or minimal in the {1 1 0} sectors. 

Extrapolation to lower crystallization temperatures is 
also readily possible for both solvent systems. Empiric- 
ally, extrapolation of the deduced 0 values (not shown) 
or of the curvature data of Figure 3 suggests that 0 and/or  
C should vanish at approximately 90°C (the least-squares 
broken line shown in Figure 3b has a correlation 
coefficient of 0.97). On this basis, crystals with curved 
edges would not be expected at or below 90'~C for 
crystallization from dilute solution for the solvents noted. 

It is found that this empirical prediction, though 
possibly leading to a correct result, may be misleading. 
The calculated shape changes with decreasing crystalliza- 
tion temperature based on parameter values listed in 
Table 2 are different from those expected based upon 
simple extrapolation from within the experimental range 
(Figure 3). The calculations (which are of the same type 
used to produce Figures 10 and 11) indicate a small cusp 
in the aspect ratio and the curvature at the { 1 1 0) regime 
I -*  II transition (which would be smoothed because of 
the slightly diffuse nature of the regime transition) and 
an increase in both curvature and aspect ratio with 
decreasing temperature starting at a temperature some 
5 10°C below the reported minimum experimental 
temperature. No experimental observations in this 
temperature range have been reported for the two 
solvents. However, we surmise that regime III crystal- 
lization tl may begin on the [1 1 0~ faces in the 
low-temperature range, If such is the case, the solution 
of the shape equations becomes imaginary for tempera- 
tures more than a few degrees below the temperature at 
which the regime I I -*  III transition might be expected 
to intervene, which should correspond to A T , ~ m ~  
30 35°C. Thus, with regime Ill assumed, there is a 
temperature, Train, below which one does not expect 
crystals of the general type depicted in l:igure 1 to form. 
(Presumably, below Tmi n, diamond-shaped lozenge 
single crystals, or perhaps dendritic crystals, with all 
{1 1 0} sectors, would be formed.) Experimentation at 
lower crystallization temperatures is clearly desirable for 
PE in the solvents considered here particularly to 
determine if a regime I1--, III transition and a 
corresponding morphological change does indeed occur. 
The overall situation, then, is that crystals of the general 
type illustrated in Figure I are predicted to occur only 
within a restricted temperature range bounded by Tmi . 
and Tm~ ,. 

As reported in Table 2, the work W2o o to form and 
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pack a fold with the concomitant lattice expansion in the 
{2 0 0} sector is greater than the corresponding process 
in an unstrained {1 1 0} sector (cf. the Wzoo/ql~o values 
in the last row). One may infer from the schematic 
diagram of Figure 7 that the fold packing problem could 
lead to a greater degree of non-adjacency and/or  tilt 
within the {2 0 0} sectors. (In this connection, 
Mansfield 51 and Kumar and Yoon s2 have shown that a 
higher work of chain folding, interpreted here to mean 
W2oo, reduces the tendency for adjacent re-entry.) This 
reduced preference for strict adjacency will tend to give 
rise to a 'fold' surface of a more disordered type than 
appears for {1 1 0}. We consider these factors to be the 
probable cause of the somewhat more disorganized 
appearance 3° reported for 'decorated' {2 0 0} fold 
surfaces as compared with the { 1 1 0}. We recognize, of 
course, that the appearance of a 'decorated' surface 
provides only a highly qualitative measure of the nature 
of the underlying structure. Consideration of the ability 
to form {2 0 0} folds and of their shape has been given 
by Patel and Farmer 5a (and references cited therein) and 
by Dav6 and Farmer 34. Recall that the latter authors 
predict repulsion of {2 0 0} chain folds. 

It is proper to ask why a strained flat-surface model, 
analogous to that used for the dominant { 1 1 0} growth 
front, would not be relevant to {2 0 0} growth as well. 
The answer is straightforward: in the derivation of the 
flux-based equations for such a model, the lattice strain 
parameter as appears as (a + as/2)ae in the nucleation 
parameter Kg in 'G2o o' oc e x p ( -  K,/TATs), whereas 
'g200' 0C exp[ -2(ao  + bo)asaJAGskT] ~3. Hence, 'G2o 0' 
and 'g2oo' would no longer have the same tempera- 
ture dependence (would no longer be parallel) and the 
{2 0 0} growth faces would be expected to exhibit (in 
principle) a regime transition. Each of these expecta- 
tions would violate a constraint enumerated above and 
each, therefore, invalidates a flat-surface model for the 
curved edge. Further details are given in a previous 
publication 33. 

The effect of the strain might be expected to decrease 
with increasing lamellar thickness, i.e. with increasing 
crystallization temperature 33. In this vein, the X-ray 
studies of Davis et al. 2s can be interpreted to indicate 
that the thicker the lamella the less important the fold 
repulsion effects in the interior lattice. Also, Marand's 
calculations 29 exhibit a decrease of a s with increasing I. 
It was found in the course of the present analysis that as 
does indeed decrease slightly with increasing crystalliza- 
tion temperature (i.e. with increasing lamellar thickness). 
This effect is small but can be detected in the results from 
the analysis of the more extensive data for n-tetradecanol. 

In addition to the previously known concentration 
effect 19's4'55, the solvent clearly affects the surface 
energetics of the crystals grown. This is most clear in the 
case of a, which relates only to the {1 1 0} sectors. 
Whatever route is employed to evaluate it, a is definitely 
lower in the solution case (5.8 7.4 erg crn-2) than for the 
melt (~  12 erg c m - 2 ) .  In the case of the {2 0 0} sectors 
the most notable apparent solvent effect involves a s. The 
higher as found for n-hexadecane, however, may result 
from the fact that the {2 0 0} sectors in the crystals 
formed in this solvent are thinner in the accessible 
experimental range than those formed in n-tetradecanol 
(cf. Figure 9). Further, even if one ignores the surprisingly 
low values of aet2oo) and q2oo for n-hexadecane (Table 
2, column 'from g(T)'), these quantities still appear to 

J. D. Hoffman 

be lower for this solvent. However, though the {2 0 0} 
sector surface free energies for PE in the two solvents are 
seemingly different, the total work of forming a fold plus 
stem in a chain-folded {2 0 0} sector, W2oo, is nearly 
the same for the two solvents. Evidently the solvent to 
some extent controls the balance between fold surface 
energy ae~2oo) and lattice strain as described by as in such 
a way as to maintain the product asae(2O0) and the total 
work of chain folding W2oo essentially constant. 

It is conceivable that the asymmetric, curved lamellar 
structures observed by Keith et al. 17 in crystals of PE 
may be amenable to an extension of the type of model 
presented here. These crystals were grown from the melt 
at the relatively high temperatures corresponding to 
regime I for the {! 1 0} sectors, and the habits observed 
involved chain tilt angles of up to 45 °. DiCorleto and 
Bassett s6, from anabaric PE sample preparations from 
the melt, have extracted lamellae that are circular discs 
which were formed in the hexagonal, rather than in the 
orthorhombic, phase. Our model of curved-edge crystals 
presented here may not be applicable directly to crystals 
with such higher symmetry. However, an analysis of such 
crystals might be attempted under the assumption that 
the growth front of the hexagonal phase is both strained 
and serrated. One notes that even in the extended-chain 
crystals of n-paraffins strain effects appear 2s, the 
repulsion of CH3- end-groups being far smaller than that 
of {2 0 0} sector chain folds. Accordingly, curved-edge 
crystals of the origin suggested here, such as appear near 
the melting point in n-C94H19 o (ref. 57),* are not 
necessarily excluded from consideration. 

Finally, we comment on the sensitivity of our analysis 
to choice of key input parameters. In particular, we must 
consider the effect of the value of ae~l lo) used on the results 
obtained. As indicated in Table 2 and in the discussion 
above, Organ and Keller found a considerable variation 
among different solvents but others did not. We thus 
chose the value a~(~o)= 90erg cm -2 for the principal 
analysis. Most of the results listed in Table 2 are 
unaffected by the value chosen for aet~o). Its effect is 
seen first in the value of a deduced from analysis of growth 
rate data (Gllo), which affects only the calculation of 
{ 1 1 0} stem lengths (and comparisons, such as in Figure 
9). Second, it affects slightly the comparison of the work 
of chain folding (W2oo/qllo row in Table 2). Con- 
sequently, except for this relatively minor uncertainty, 
our analysis of the data for curved-edge crystals of 
polyethylene, particularly in terms of the characteristics 
of the {2 0 0} sectors, is unaffected. 

Another source of error could be in the value of the 
dissolution temperature, To, which affects the values of 
Kg(l ) and Kg(ll) and the ratio of the Kg values for the 
{1 1 0} faces. The T O values employed here were based 
on T~ versus 1/l plots 24'2s, an accepted and potentially 
accurate method to obtain this quantity. An indication 
that the T d values are essentially correct is that the ratio 
Kg(1)/Kg(ll) is 2 within 10% for both solvents. If T d were 
seriously in error, this ratio would fall well outside this 
limit. 

CONCLUSIONS 

It is evident that nucleation theory, suitably expanded 

* Crystals resembling in overall shape that depicted in Figure 11 at 
Tx= 118.7°C are seen in highly purified n-C9,~H19 o at very low 
undercoolings 
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and modified, can account in detail for the existence of 
lamellae with curved edges. For the case of PE single 
crystals, growth of the dominant {1 1 0} sectors follows 
the energetics associated with the classical LH theory for 
the model of a flat growth front without significant lattice 
strain. This model features a large '~' term so that growth 
in a given regime is according to G~ ~0 oc e x p ( -  Kg/TAT) ,  
where Kg contains the factor a a ~ o ) .  Growth of the 
subordinate {2 0 0} sectors conforms to a new model in 
wh4ch there is no a factor because of the serrated growth 
front and where the effect of lattice strain resulting from 
the repulsion of the 112 0 0} folds is taken into account 
through the lattice strain parameter a,; the result is that 
G2o o O c e x p ( - K J T A T ` ) ,  where K, contains the factor 
a,a~2oo) and where a, < a. The substrate completion rate 
for the serrated and strained {2 0 0} face is reduced by 
an extra factor also involving K, as in g200oc 
e x p ( -  Ks~TATs). Thus, in a bounded temperature range, 
,(/200 can become just slightly faster than the rate of 
advance of the crystal edge, which is closely equivalent 
to the growth rate of the {1 1 0} growth face. This is 
precisely the condition under which curvature conform- 
ing to the shape of a section of an ellipse will appear on 
the subordinate {2 0 0} growth face. The lattice strain 
reduces the stability of the {2 0 0} sectoi, with the result 
that the undercooling AT~ effective at the {2 0 0} growth 
front is smaller than that at {1 1 0}. 

With the lattice strain model a single additional 
parameter whose existence is independently supportable, 
namely a s , permits one to: (1) fit aspect ratio and 
curvature data quantitatively over a considerable range 
of growth temperatures for two different solvents; (2) 
deduce values of a, and of the fold surface free energy of 
the strained sector; (3) explain the phenomenological 
behaviour of the growth rates, including the presence of 
regimes I and II on the {1 1 0~ faces and the absence 
of the corresponding regime change on the {2 0 0} faces; 
(4) anticipate the poorer fold surface regularity and the 
larger angle of tilt in the {2 0 0} sectors; (5) explain (at 
least qualitatively) the lower melting point observed in 
the {2 0 0} sectors of certain 'truncated' crystals; (6) 
introduce a more sophisticated view of the total work of 
chain folding, involving both the work of forming the 
fold and the work of packing such a fold onto the surface 
of a lamella; (7) make use of the expanded definition of 
the total work of chain folding Wzo o to explain why 
growth in the [2 0 0} sectors is slower than it is in the 
{1 1 0} sectors, thus providing a rationale for 'b' axis 
growth in PE (which has been a long-standing puzzle in 
polymer crystallization); (8) predict, apparently correctly, 
that there is an upper temperature limit, Tin, ~, above 
which Figure 1 type crystals cannot form; (9) predict the 
existence of an experimental lower crystallization 
temperature limit for the type of crystal considered; and 
(10) gain additional insight into the subtleties of polymer 
crystal growth, such as drawing attention to the effect of 
chain fold repulsions on growth rates and morphology. 
It is worth emphasizing that item (1) above can be stated 
another way: given a~ and the normal input data, one 
can accurately predict detailed crystal shapes as a 
function of growth temperature for both solvents. 

The lattice strain model with a molecularly serrated 
growth front appears reasonable on the basis of the 
known crystal structure and the inferred strain values 
have acceptable magnitudes. In particular, the general 
level of strain in the {2 0 0} sectors deduced here from 

the edge curvature is supported by independent evidence, 
namely by an estimate of the value of a, based upon the 
X-ray data (giving the degree of strain) combined with 
molecular energy calculations. It is evident that the LH 
flux equation version of nucleation theory remains a valid 
approach to polymer crystal growth with chain folding. 

Further work is indicated. In order to achieve a better 
understanding of melting behaviour, it would be of 
interest to obtain melting-point data on PE crystals 
containing the two sector types under conditions where 
it was relatively certain that annealing effects were absent 
during both the crystallization and melting runs and 
where the lattice parameters indicating the degree of 
strain were known beforehand. Studies of the type 
executed by Organ and Keller but with different solvents 
are desirable to determine if the 'anomalous' behaviour 
of n-hexadecane with its apparently low a~120ol and 
relatively large a S values is more general. Experiments 
with good PE fractions would be most useful in 
confirming (or refuting) the existence of the Tma X effect. 
On general grounds it would be of interest to pursue the 
search for regime I--* II transitions for PE in different 
solvents, including xylene, and to attempt to locate the 
regime II --* IlI transition that is predicted to occur at 
large undercoolings in these solvents. From the 
theoretical viewpoint, it would be desirable to understand 
in detail why cr in the presence of solvent appears to be 
less than it is in the melt. Also, the curvature theory may 
need to be extended in order to apply to the novel 
lamellae derived from melt-crystallized PE by both 
Bassett et al. (circular lamellae from the hexagonal phase 
and lenticular crystals from the orthorhombic form) and 
by Keith et al. (asymmetric lamellae exhibiting curved 
edges). Finally, we acknowledge the theoretical chal- 
lenges involved in adapting the theory to systems other 
than polyethylene. 
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N o t e  added in p roo f  

T h e  so lu t i on  o f  the  F r a n k  e q u a t i o n s  wi th  m o v i n g  
b o u n d a r y  c o n d i t i o n s  g iven  here  is for  the  case g > h; T o d a  
(Polymer  in press)  has  o b t a i n e d  so lu t ions  for  the  case 
g < h  which  lead  to l en t i cu la r - l ike  crys ta ls  where  the  
s u b o r d i n a t e  g r o w t h  f ron t  is c u r v e d  bu t  depa r t s  f rom 
be ing  a sec t ion  of  an  ell ipse,  espec ia l ly  n e a r  the  apices.  
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